
1

0509B–8051–04/04

Section 1

80C51 Microcontrollers Instruction Set

For interrupt response time information, refer to the hardware description chapter.

Note: 1. Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or bits in the PSW) also affect flag settings.

Instructions that Affect Flag Settings(1)

Instruction Flag Instruction Flag

C OV AC C OV AC

ADD X X X CLR C O

ADDC X X X CPL C X

SUBB X X X ANL C,bit X

MUL O X ANL C,/bit X

DIV O X ORL C,bit X

DA X ORL C,/bit X

RRC X MOV C,bit X

RLC X CJNE X

SETB C 1

The Instruction Set and Addressing Modes
Rn Register R7-R0 of the currently selected Register Bank.

direct 8-bit internal data location’s address. This could be an Internal Data RAM location (0-127) or a SFR [i.e., I/O 
port, control register, status register, etc. (128-255)].

@Ri 8-bit internal data RAM location (0-255) addressed indirectly through register R1or R0.

#data 8-bit constant included in instruction.

#data 16 16-bit constant included in instruction.

addr 16 16-bit destination address. Used by LCALL and LJMP. A branch can be anywhere within the 64K byte Program 
Memory address space.

addr 11 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2K byte page of 
program memory as the first byte of the following instruction.

rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional jumps. Range is -128 to +127 
bytes relative to first byte of the following instruction.

bit Direct Addressed bit in Internal Data RAM or Special Function Register.



80C51 Microcontrollers Instruction Set

1-2  

0509B–8051–04/04

Table 1-1.  Instruction Set Summary

Note: Key:  [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

0 1 2 3 4 5 6 7

0 NOP JBC
bit,rel

[3B, 2C]

JB
bit, rel

[3B, 2C]

JNB
bit, rel

[3B, 2C]

JC
rel

[2B, 2C]

JNC
rel

[2B, 2C]

JZ
rel

[2B, 2C]

JNZ
rel

[2B, 2C]

1 AJMP
(P0)

[2B, 2C]

ACALL
(P0)

[2B, 2C]

AJMP
(P1)

[2B, 2C]

ACALL
(P1)

[2B, 2C]

AJMP
(P2)

[2B, 2C]

ACALL
(P2)

[2B, 2C]

AJMP
(P3)

[2B, 2C]

ACALL
(P3)

[2B, 2C]

2 LJMP
addr16
[3B, 2C]

LCALL
addr16
[3B, 2C]

RET
[2C]

RETI
[2C]

ORL
dir, A
[2B]

ANL
dir, A
[2B]

XRL
dir, a
[2B]

ORL
C, bit

[2B, 2C]

3 RR
A

RRC
A

RL
A

RLC
A

ORL
dir, #data
[3B, 2C]

ANL
dir, #data
[3B, 2C]

XRL
dir, #data
[3B, 2C]

JMP
@A + DPTR

[2C]

4 INC
A

DEC
A

ADD
A, #data

[2B]

ADDC
A, #data

[2B]

ORL
A, #data

[2B]

ANL
A, #data

[2B]

XRL
A, #data

[2B]

MOV
A, #data

[2B]

5 INC
dir

[2B]

DEC
dir

[2B]

ADD
A, dir
[2B]

ADDC
A, dir
[2B]

ORL
A, dir
[2B]

ANL
A, dir
[2B]

XRL
A, dir
[2B]

MOV
dir, #data
[3B, 2C]

6 INC
@R0

DEC
@R0

ADD
A, @R0

ADDC
A, @R0

ORL
A, @R0

ANL
A, @R0

XRL
A, @R0

MOV
@R0, @data

[2B]

7 INC
@R1

DEC
@R1

ADD
A, @R1

ADDC
A, @R1

ORL
A, @R1

ANL
A, @R1

XRL
A, @R1

MOV
@R1, #data

[2B]

8 INC
R0

DEC
R0

ADD
A, R0

ADDC
A, R0

ORL
A, R0

ANL
A, R0

XRL
A, R0

MOV
R0, #data

[2B]

9 INC
R1

DEC
R1

ADD
A, R1

ADDC
A, R1

ORL
A, R1

ANL
A, R1

XRL
A, R1

MOV
R1, #data

[2B]

A INC
R2

DEC
R2

ADD
A, R2

ADDC
A, R2

ORL
A, R2

ANL
A, R2

XRL
A, R2

MOV
R2, #data

[2B]

B INC
R3

DEC
R3

ADD
A, R3

ADDC
A, R3

ORL
A, R3

ANL
A, R3

XRL
A, R3

MOV
R3, #data

[2B]

C INC
R4

DEC
R4

ADD
A, R4

ADDC
A, R4

ORL
A, R4

ANL
A, R4

XRL
A, R4

MOV
R4, #data

[2B]

D INC
R5

DEC
R5

ADD
A, R5

ADDC
A, R5

ORL
A, R5

ANL
A, R5

XRL
A, R5

MOV
R5, #data

[2B]

E INC
R6

DEC
R6

ADD
A, R6

ADDC
A, R6

ORL
A, R6

ANL
A, R6

XRL
A, R6

MOV
R6, #data

[2B]

F INC
R7

DEC
R7

ADD
A, R7

ADDC
A, R7

ORL
A, R7

ANL
A, R7

XRL
A, R7

MOV
R7, #data

[2B]



80C51 Microcontrollers Instruction Set

1-3

0509B–8051–04/04

Table 1-2.  Instruction Set Summary (Continued)

Note: Key:  [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

8 9 A B C D E F

0 SJMP
REL

[2B, 2C]

MOV
DPTR,#
data 16
[3B, 2C]

ORL
C, /bit

[2B, 2C]

ANL
C, /bit

[2B, 2C]

PUSH
dir

[2B, 2C]

POP
dir

[2B, 2C]

MOVX A,
@DPTR

[2C]

MOVX
@DPTR, A

[2C]

1 AJMP
(P4)

[2B, 2C]

ACALL
(P4)

[2B, 2C]

AJMP
(P5)

[2B, 2C]

ACALL
(P5)

[2B, 2C]

AJMP
(P6)

[2B, 2C]

ACALL
(P6)

[2B, 2C]

AJMP
(P7)

[2B, 2C]

ACALL
(P7)

[2B, 2C]

2 ANL
C, bit

[2B, 2C]

MOV
bit, C

[2B, 2C]

MOV
C, bit
[2B]

CPL
bit

[2B]

CLR
bit

[2B]

SETB
bit

[2B]

MOVX
A, @R0

[2C]

MOVX
wR0, A

[2C]

3 MOVC A,
@A + PC

[2C]

MOVC A,
@A + DPTR

[2C]

INC
DPTR
[2C]

CPL
C

CLR
C

SETB
C

MOVX
A, @RI

[2C]

MOVX
@RI, A

[2C]

4 DIV
AB

[2B, 4C]

SUBB
A, #data

[2B]

MUL
AB
[4C]

CJNE A,
#data, rel
[3B, 2C]

SWAP
A

DA
A

CLR
A

CPL
A

5 MOV
dir, dir

[3B, 2C]

SUBB
A, dir
[2B]

CJNE
A, dir, rel
[3B, 2C]

XCH
A, dir
[2B]

DJNZ
dir, rel

[3B, 2C]

MOV
A, dir
[2B]

MOV
dir, A
[2B]

6 MOV
dir, @R0
[2B, 2C]

SUBB
A, @R0

MOV
@R0, dir
[2B, 2C]

CJNE
@R0, #data, rel

[3B, 2C]

XCH
A, @R0

XCHD
A, @R0

MOV
A, @R0

MOV
@R0, A

7 MOV
dir, @R1
[2B, 2C]

SUBB
A, @R1

MOV
@R1, dir
[2B, 2C]

CJNE
@R1, #data, rel

[3B, 2C]

XCH
A, @R1

XCHD
A, @R1

MOV
A, @R1

MOV
@R1, A

8 MOV
dir, R0

[2B, 2C]

SUBB
A, R0

MOV
R0, dir

[2B, 2C]

CJNE
R0, #data, rel

[3B, 2C]

XCH
A, R0

DJNZ
R0, rel

[2B, 2C]

MOV
A, R0

MOV
R0, A

9 MOV
dir, R1

[2B, 2C]

SUBB
A, R1

MOV
R1, dir

[2B, 2C]

CJNE
R1, #data, rel

[3B, 2C]

XCH
A, R1

DJNZ
R1, rel

[2B, 2C]

MOV
A, R1

MOV
R1, A

A MOV
dir, R2

[2B, 2C]

SUBB
A, R2

MOV
R2, dir

[2B, 2C]

CJNE
R2, #data, rel

[3B, 2C]

XCH
A, R2

DJNZ
R2, rel

[2B, 2C]

MOV
A, R2

MOV
R2, A

B MOV
dir, R3

[2B, 2C]

SUBB
A, R3

MOV
R3, dir

[2B, 2C]

CJNE
R3, #data, rel

[3B, 2C]

XCH
A, R3

DJNZ
R3, rel

[2B, 2C]

MOV
A, R3

MOV
R3, A

C MOV
dir, R4

[2B, 2C]

SUBB
A, R4

MOV
R4, dir

[2B, 2C]

CJNE
R4, #data, rel

[3B, 2C]

XCH
A, R4

DJNZ
R4, rel

[2B, 2C]

MOV
A, R4

MOV
R4, A

D MOV
dir, R5

[2B, 2C]

SUBB
A, R5

MOV
R5, dir

[2B, 2C]

CJNE
R5, #data, rel

[3B, 2C]

XCH
A, R5

DJNZ
R5, rel

[2B, 2C]

MOV
A, R5

MOV
R5, A

E MOV
dir, R6

[2B, 2C]

SUBB
A, R6

MOV
R6, dir

[2B, 2C]

CJNE
R6, #data, rel

[3B, 2C]

XCH
A, R6

DJNZ
R6, rel

[2B, 2C]

MOV
A, R6

MOV
R6. A

F MOV
dir, R7

[2B, 2C]

SUBB
A, R7

MOV
R7, dir

[2B, 2C]

CJNE
R7, #data, rel

[3B, 2C]

XCH
A, R7

DJNZ
R7, rel

[2B, 2C]

MOV
A, R7

MOV
R7, A



80C51 Microcontrollers Instruction Set

1-4

0509B–8051–04/04

Table 1-3.  AT89 Instruction Set Summary(1)

Note: 1. All mnemonics copyrighted © Intel Corp., 1980.

Mnemonic Description Byte Oscillator 
Period

ARITHMETIC OPERATIONS

ADD A,Rn Add register to 
Accumulator

1 12

ADD A,direct Add direct byte to 
Accumulator

2 12

ADD A,@Ri Add indirect RAM to 
Accumulator

1 12

ADD A,#data Add immediate data to 
Accumulator

2 12

ADDC A,Rn Add register to 
Accumulator with Carry

1 12

ADDC A,direct Add direct byte to 
Accumulator with Carry

2 12

ADDC A,@Ri Add indirect RAM to 
Accumulator with Carry

1 12

ADDC A,#data Add immediate data to 
Acc with Carry

2 12

SUBB A,Rn Subtract Register from 
Acc with borrow

1 12

SUBB A,direct Subtract direct byte from 
Acc with borrow

2 12

SUBB A,@Ri Subtract indirect RAM 
from ACC with borrow

1 12

SUBB A,#data Subtract immediate data 
from Acc with borrow

2 12

INC A Increment Accumulator 1 12

INC Rn Increment register 1 12

INC direct Increment direct byte 2 12

INC @Ri Increment direct RAM 1 12

DEC A Decrement Accumulator 1 12

DEC Rn Decrement Register 1 12

DEC direct Decrement direct byte 2 12

DEC @Ri Decrement indirect RAM 1 12

INC DPTR Increment Data Pointer 1 24

MUL AB Multiply A & B 1 48

DIV AB Divide A by B 1 48

DA A Decimal Adjust 
Accumulator

1 12

Mnemonic Description Byte Oscillator 
Period

LOGICAL OPERATIONS

ANL A,Rn AND Register to 
Accumulator

1 12

ANL A,direct AND direct byte to 
Accumulator

2 12

ANL A,@Ri AND indirect RAM to 
Accumulator

1 12

ANL A,#data AND immediate data to 
Accumulator

2 12

ANL direct,A AND Accumulator to 
direct byte

2 12

ANL direct,#data AND immediate data to 
direct byte 

3 24

ORL A,Rn OR register to 
Accumulator

1 12

ORL A,direct OR direct byte to 
Accumulator

2 12

ORL A,@Ri OR indirect RAM to 
Accumulator 

1 12

ORL A,#data OR immediate data to 
Accumulator

2 12

ORL direct,A OR Accumulator to 
direct byte

2 12

ORL direct,#data OR immediate data to 
direct byte

3 24

XRL A,Rn Exclusive-OR register to 
Accumulator

1 12

XRL A,direct Exclusive-OR direct byte 
to Accumulator

2 12

XRL A,@Ri Exclusive-OR indirect 
RAM to Accumulator

1 12

XRL A,#data Exclusive-OR immediate 
data to Accumulator

2 12

XRL direct,A Exclusive-OR 
Accumulator to direct 
byte

2 12

XRL direct,#data Exclusive-OR immediate 
data to direct byte

3 24

CLR A Clear Accumulator 1 12

CPL A Complement 
Accumulator

1 12

RL A Rotate Accumulator Left 1 12

RLC A Rotate Accumulator Left 
through the Carry

1 12

LOGICAL OPERATIONS (continued)



80C51 Microcontrollers Instruction Set

1-5
0509B–8051–04/04

RR A Rotate Accumulator 
Right

1 12

RRC A Rotate Accumulator 
Right through the Carry

1 12

SWAP A Swap nibbles within the 
Accumulator

1 12

DATA TRANSFER

MOV A,Rn Move register to 
Accumulator

1 12

MOV A,direct Move direct byte to 
Accumulator

2 12

MOV A,@Ri Move indirect RAM to 
Accumulator

1 12

MOV A,#data Move immediate data to 
Accumulator

2 12

MOV Rn,A Move Accumulator to 
register

1 12

MOV Rn,direct Move direct byte to 
register

2 24

MOV Rn,#data Move immediate data to 
register

2 12

MOV direct,A Move Accumulator to 
direct byte

2 12

MOV direct,Rn Move register to direct 
byte

2 24

MOV direct,direct Move direct byte to direct 3 24

MOV direct,@Ri Move indirect RAM to 
direct byte

2 24

MOV direct,#data Move immediate data to 
direct byte

3 24

MOV @Ri,A Move Accumulator to 
indirect RAM

1 12

MOV @Ri,direct Move direct byte to 
indirect RAM

2 24

MOV @Ri,#data Move immediate data to 
indirect RAM

2 12

MOV DPTR,#data16 Load Data Pointer with a 
16-bit constant

3 24

MOVC A,@A+DPTR Move Code byte relative 
to DPTR to Acc

1 24

MOVC A,@A+PC Move Code byte relative 
to PC to Acc

1 24

MOVX A,@Ri Move External RAM (8-
bit addr) to Acc

1 24

DATA TRANSFER (continued)

MOVX A,@DPTR Move Exernal RAM (16-
bit addr) to Acc

1 24

Mnemonic Description Byte Oscillator 
Period

MOVX @Ri,A Move Acc to External 
RAM (8-bit addr) 

1 24

MOVX @DPTR,A Move Acc to External 
RAM (16-bit addr)

1 24

PUSH direct Push direct byte onto 
stack

2 24

POP direct Pop direct byte from 
stack

2 24

XCH A,Rn Exchange register with 
Accumulator

1 12

XCH A,direct Exchange direct byte 
with Accumulator

2 12

XCH A,@Ri Exchange indirect RAM 
with Accumulator

1 12

XCHD A,@Ri Exchange low-order 
Digit indirect RAM with 
Acc

1 12

BOOLEAN VARIABLE MANIPULATION

CLR C Clear Carry 1 12

CLR bit Clear direct bit 2 12

SETB C Set Carry 1 12

SETB bit Set direct bit 2 12

CPL C Complement Carry 1 12

CPL bit Complement direct bit 2 12

ANL C,bit AND direct bit to CARRY 2 24

ANL C,/bit AND complement of 
direct bit to Carry

2 24

ORL C,bit OR direct bit to Carry 2 24

ORL C,/bit OR complement of direct 
bit to Carry

2 24

MOV C,bit Move direct bit to Carry 2 12

MOV bit,C Move Carry to direct bit 2 24

JC rel Jump if Carry is set 2 24

JNC rel Jump if Carry not set 2 24

JB bit,rel Jump if direct Bit is set 3 24

JNB bit,rel Jump if direct Bit is Not 
set

3 24

JBC bit,rel Jump if direct Bit is set & 
clear bit

3 24

PROGRAM BRANCHING

ACAL
L

addr11 Absolute Subroutine Call 2 24

LCALL addr16 Long Subroutine Call 3 24

RET Return from Subroutine 1 24

Mnemonic Description Byte Oscillator 
Period



80C51 Microcontrollers Instruction Set

1-6

0509B–8051–04/04

RETI Return from         
interrupt

1 24

AJMP addr11 Absolute Jump 2 24

LJMP addr16 Long Jump 3 24

SJMP rel Short Jump (relative 
addr)

2 24

JMP @A+DPTR Jump indirect relative to 
the DPTR

1 24

JZ rel Jump if Accumulator is 
Zero

2 24

JNZ rel Jump if Accumulator is 
Not Zero

2 24

CJNE A,direct,rel Compare direct byte to 
Acc and Jump if Not 
Equal

3 24

CJNE A,#data,rel Compare immediate to 
Acc and Jump if Not 
Equal

3 24

CJNE Rn,#data,rel Compare immediate to 
register and Jump if Not 
Equal

3 24

CJNE @Ri,#data,rel Compare immediate to 
indirect and Jump if Not 
Equal

3 24

DJNZ Rn,rel Decrement register and 
Jump if Not Zero

2 24

DJNZ direct,rel Decrement direct byte 
and Jump if Not Zero

3 24

NOP  No Operation 1 12

Mnemonic Description Byte Oscillator 
Period



80C51 Microcontrollers Instruction Set

1-7
0509B–8051–04/04

Table 1-4.  Instruction Opcodes in Hexadecimal Order

Hex 
Code

Number 
of Bytes

Mnemonic Operands

00 1 NOP

01 2 AJMP code addr

02 3 LJMP code addr

03 1 RR A

04 1 INC A

05 2 INC data addr

06 1 INC @R0

07 1 INC @R1

08 1 INC R0

09 1 INC R1

0A 1 INC R2

0B 1 INC R3

0C 1 INC R4

0D 1 INC R5

0E 1 INC R6

0F 1 INC R7

10 3 JBC bit addr,code addr

11 2 ACALL code addr

12 3 LCALL code addr

13 1 RRC A

14 1 DEC A

15 2 DEC data addr

16 1 DEC @R0

17 1 DEC @R1

18 1 DEC R0

19 1 DEC R1

1A 1 DEC R2

1B 1 DEC R3

1C 1 DEC R4

1D 1 DEC R5

1E 1 DEC R6

1F 1 DEC R7

20 3 JB bit addr,code addr

21 2 AJMP code addr

22 1 RET

23 1 RL A

24 2 ADD A,#data

25 2 ADD A,data addr

Hex 
Code

Number 
of Bytes

Mnemonic Operands

26 1 ADD A,@R0

27 1 ADD A,@R1

28 1 ADD A,R0

29 1 ADD A,R1

2A 1 ADD A,R2

2B 1 ADD A,R3

2C 1 ADD A,R4

2D 1 ADD A,R5

2E 1 ADD A,R6

2F 1 ADD A,R7

30 3 JNB bit addr,code addr

31 2 ACALL code addr

32 1 RETI

33 1 RLC A

34 2 ADDC A,#data

35 2 ADDC A,data addr

36 1 ADDC A,@R0

37 1 ADDC A,@R1

38 1 ADDC A,R0

39 1 ADDC A,R1

3A 1 ADDC A,R2

3B 1 ADDC A,R3

3C 1 ADDC A,R4

3D 1 ADDC A,R5

3E 1 ADDC A,R6

3F 1 ADDC A,R7

40 2 JC code addr

41 2 AJMP code addr

42 2 ORL data addr,A

43 3 ORL data addr,#data

44 2 ORL A,#data

45 2 ORL A,data addr

46 1 ORL A,@R0

47 1 ORL A,@R1

48 1 ORL A,R0

49 1 ORL A,R1

4A 1 ORL A,R2



80C51 Microcontrollers Instruction Set

1-8

0509B–8051–04/04

4B 1 ORL A,R3

4C 1 ORL A,R4

4D 1 ORL A,R5

4E 1 ORL A,R6

4F 1 ORL A,R7

50 2 JNC code addr

51 2 ACALL code addr

52 2 ANL data addr,A

53 3 ANL data addr,#data

54 2 ANL A,#data

55 2 ANL A,data addr

56 1 ANL A,@R0

57 1 ANL A,@R1

58 1 ANL A,R0

59 1 ANL A,R1

5A 1 ANL A,R2

5B 1 ANL A,R3

5C 1 ANL A,R4

5D 1 ANL A,R5

5E 1 ANL A,R6

5F 1 ANL A,R7

60 2 JZ code addr

61 2 AJMP code addr

62 2 XRL data addr,A

63 3 XRL data addr,#data

64 2 XRL A,#data

65 2 XRL A,data addr

66 1 XRL A,@R0

67 1 XRL A,@R1

68 1 XRL A,R0

69 1 XRL A,R1

6A 1 XRL A,R2

6B 1 XRL A,R3

6C 1 XRL A,R4

6D 1 XRL A,R5

6E 1 XRL A,R6

6F 1 XRL A,R7

70 2 JNZ code addr

Hex 
Code

Number 
of Bytes

Mnemonic Operands

71 2 ACALL code addr

72 2 ORL C,bit addr

73 1 JMP @A+DPTR

74 2 MOV A,#data

75 3 MOV data addr,#data

76 2 MOV @R0,#data

77 2 MOV @R1,#data

78 2 MOV R0,#data

79 2 MOV R1,#data

7A 2 MOV R2,#data

7B 2 MOV R3,#data

7C 2 MOV R4,#data

7D 2 MOV R5,#data

7E 2 MOV R6,#data

7F 2 MOV R7,#data

80 2 SJMP code addr

81 2 AJMP code addr

82 2 ANL C,bit addr

83 1 MOVC A,@A+PC

84 1 DIV AB

85 3 MOV data addr,data addr

86 2 MOV data addr,@R0

87 2 MOV data addr,@R1

88 2 MOV data addr,R0

89 2 MOV data addr,R1

8A 2 MOV data addr,R2

8B 2 MOV data addr,R3

8C 2 MOV data addr,R4

8D 2 MOV data addr,R5

8E 2 MOV data addr,R6

8F 2 MOV data addr,R7

90 3 MOV DPTR,#data

91 2 ACALL code addr

92 2 MOV bit addr,C

93 1 MOVC A,@A+DPTR

94 2 SUBB A,#data

95 2 SUBB A,data addr

96 1 SUBB A,@R0

Hex 
Code

Number 
of Bytes

Mnemonic Operands



80C51 Microcontrollers Instruction Set

1-9
0509B–8051–04/04

97 1 SUBB A,@R1

98 1 SUBB A,R0

99 1 SUBB A,R1

9A 1 SUBB A,R2

9B 1 SUBB A,R3

9C 1 SUBB A,R4

9D 1 SUBB A,R5

9E 1 SUBB A,R6

9F 1 SUBB A,R7

A0 2 ORL C,/bit addr

A1 2 AJMP code addr

A2 2 MOV C,bit addr

A3 1 INC DPTR

A4 1 MUL AB

A5 reserved

A6 2 MOV @R0,data addr

A7 2 MOV @R1,data addr

A8 2 MOV R0,data addr

A9 2 MOV R1,data addr

AA 2 MOV R2,data addr

AB 2 MOV R3,data addr

AC 2 MOV R4,data addr

AD 2 MOV R5,data addr

AE 2 MOV R6,data addr

AF 2 MOV R7,data addr

B0 2 ANL C,/bit addr

B1 2 ACALL code addr

B2 2 CPL bit addr

B3 1 CPL C

B4 3 CJNE A,#data,code addr

B5 3 CJNE A,data addr,code addr

B6 3 CJNE @R0,#data,code addr

B7 3 CJNE @R1,#data,code addr

B8 3 CJNE R0,#data,code addr

B9 3 CJNE R1,#data,code addr

BA 3 CJNE R2,#data,code addr

BB 3 CJNE R3,#data,code addr

BC 3 CJNE R4,#data,code addr

Hex 
Code

Number 
of Bytes

Mnemonic Operands

BD 3 CJNE R5,#data,code addr

BE 3 CJNE R6,#data,code addr

BF 3 CJNE R7,#data,code addr

C0 2 PUSH data addr

C1 2 AJMP code addr

C2 2 CLR bit addr

C3 1 CLR C

C4 1 SWAP A

C5 2 XCH A,data addr

C6 1 XCH A,@R0

C7 1 XCH A,@R1

C8 1 XCH A,R0

C9 1 XCH A,R1

CA 1 XCH A,R2

CB 1 XCH A,R3

CC 1 XCH A,R4

CD 1 XCH A,R5

CE 1 XCH A,R6

CF 1 XCH A,R7

D0 2 POP data addr

D1 2 ACALL code addr

D2 2 SETB bit addr

D3 1 SETB C

D4 1 DA A

D5 3 DJNZ data addr,code addr

D6 1 XCHD A,@R0

D7 1 XCHD A,@R1

D8 2 DJNZ R0,code addr

D9 2 DJNZ R1,code addr

DA 2 DJNZ R2,code addr

DB 2 DJNZ R3,code addr

DC 2 DJNZ R4,code addr

DD 2 DJNZ R5,code addr

DE 2 DJNZ R6,code addr

DF 2 DJNZ R7,code addr

E0 1 MOVX A,@DPTR

E1 2 AJMP code addr

E2 1 MOVX A,@R0

Hex 
Code

Number 
of Bytes

Mnemonic Operands



80C51 Microcontrollers Instruction Set

1-10

0509B–8051–04/04

E3 1 MOVX A,@R1

E4 1 CLR A

E5 2 MOV A,data addr

E6 1 MOV A,@R0

E7 1 MOV A,@R1

E8 1 MOV A,R0

E9 1 MOV A,R1

EA 1 MOV A,R2

EB 1 MOV A,R3

EC 1 MOV A,R4

ED 1 MOV A,R5

EE 1 MOV A,R6

EF 1 MOV A,R7

F0 1 MOVX @DPTR,A

F1 2 ACALL code addr

F2 1 MOVX @R0,A

F3 1 MOVX @R1,A

F4 1 CPL A

F5 2 MOV data addr,A

F6 1 MOV @R0,A

F7 1 MOV @R1,A

F8 1 MOV R0,A

F9 1 MOV R1,A

FA 1 MOV R2,A

FB 1 MOV R3,A

FC 1 MOV R4,A

FD 1 MOV R5,A

FE 1 MOV R6,A

FF 1 MOV R7,A

Hex 
Code

Number 
of Bytes

Mnemonic Operands



80C51 Microcontrollers Instruction Set

1-11

0509B–8051–04/04

1.1 Instruction Definitions

ACALL addr11

Function: Absolute Call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC 
twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order 
byte first) and increments the Stack Pointer twice. The destination address is obtained by successively 
concatenating the five high-order bits of the incremented PC, opcode bits 7 through 5, and the second byte of 
the instruction. The subroutine called must therefore start within the same 2 K block of the program memory as 
the first byte of the instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label SUBRTN is at program memory location 0345 H. After executing the following 
instruction,

ACALL SUBRTN

at location 0123H, SP contains 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively, 
and the PC contains 0345H.

Bytes: 2

Cycles: 2

Encoding: a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC10-0) ← page address



80C51 Microcontrollers Instruction Set

1-12  

0509B–8051–04/04

ADD A,<src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and 
auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When 
adding unsigned integers, the carry flag indicates an overflow occurred. 

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise, OV is 
cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive 
operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (1100001lB), and register 0 holds 0AAH (10101010B). The following instruction,

ADD A,R0

leaves 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.

ADD A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 1 r r r

Operation: ADD
(A) ← (A) + (Rn)

ADD A,direct

Bytes: 2

Cycles: 1

Encoding: 0 0 1 0 0 1 0 1 direct address

Operation: ADD
(A) ← (A) + (direct)

ADD A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 0 1 1 i

Operation: ADD
(A) ← (A) + ((Ri))

ADD A,#data

Bytes: 2

Cycles: 1

Encoding: 0 0 1 0 0 1 0 0 immediate data

Operation: ADD
(A) ← (A) + #data



80C51 Microcontrollers Instruction Set

1-13

0509B–8051–04/04

ADDC A, <src-byte> 

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the 
result in the Accumulator. The carry and auxiliary-carry flags are set respectively, if there is a carry-out from bit 7 
or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV 
is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive 
operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The 
following instruction,

ADDC A,R0

leaves 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1.

ADDC A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 1 r r r

Operation: ADDC
(A) ← (A) + (C) + (Rn)

ADDC A,direct

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 0 1 0 1 direct address

Operation: ADDC
(A) ← (A) + (C) + (direct)

ADDC A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 0 1 1 i

Operation: ADDC
(A) ← (A) + (C) + ((Ri))

ADDC A,#data

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 0 1 0 0 immediate data

Operation: ADDC
(A) ← (A) + (C) + #data



80C51 Microcontrollers Instruction Set

1-14  

0509B–8051–04/04

AJMP addr11

ANL <dest-byte>,<src-byte>

Function: Absolute Jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the 
high-order five bits of the PC (after incrementing the PC twice), opcode bits 7 through 5, and the second byte of 
the instruction. The destination must therfore be within the same 2 K block of program memory as the first byte 
of the instruction following AJMP.

Example: The label JMPADR is at program memory location 0123H. The following instruction,

AJMP JMPADR

is at location 0345H and loads the PC with 0123H.

Bytes: 2

Cycles: 2

Encoding: a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: AJMP
(PC) ← (PC) + 2
(PC10-0) ← page address

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the 
destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source 
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the 
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read 
from the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001lB), and register 0 holds 55H (01010101B), then the following 
instruction,

ANL A,R0

leaves 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction clears combinations of bits in any RAM 
location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a 
constant contained in the instruction or a value computed in the Accumulator at run-time. The following 
instruction,

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

ANL A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 1 0 1 1 r r r

Operation: ANL
(A) ← (A) ∧  (Rn)



80C51 Microcontrollers Instruction Set

1-15

0509B–8051–04/04

ANL A,direct

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 1 0 1 direct address

Operation: ANL
(A) ← (A) ∧  (direct)

ANL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 1 0 1 0 1 1 i 

Operation: ANL
(A) ← (A) ∧  ((Ri))

ANL A,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 1 0 0 immediate data 

Operation: ANL
(A) ← (A) ∧  #data

ANL direct,A

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 0 1 0 direct address

Operation: ANL
(direct) ← (direct) ∧  (A)

ANL direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 0 1 0 0 1 1 direct address immediate data

Operation: ANL
(direct) ← (direct) ∧  #data



80C51 Microcontrollers Instruction Set

1-16  

0509B–8051–04/04

ANL C,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, then ANL C clears the carry flag; otherwise, this instruction 
leaves the carry flag in its current state. A slash ( / ) preceding the operand in the assembly language indicates 
that the logical complement of the addressed bit is used as the source value, but the source bit itself is not 
affected. No other flags are affected.

Only direct addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE

ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7

ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG

ANL C,bit

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 1 0 bit address

Operation: ANL
(C) ← (C) ∧  (bit)

ANL C,/bit

Bytes: 2

Cycles: 2

Encoding: 1 0 1 1 0 0 0 0 bit address

Operation: ANL
(C) ← (C) ∧        (bit)



80C51 Microcontrollers Instruction Set

1-17

0509B–8051–04/04

CJNE <dest-byte>,<src-byte>, rel

Function: Compare and Jump if Not Equal.

Description: CJNE compares the magnitudes of the first two operands and branches if their values are not equal. The branch 
destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after 
incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of 
<dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. Neither 
operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be compared with any 
directly addressed byte or immediate data, and any indirect RAM location or working register can be compared 
with an immediate constant.

Example: The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence,

CJNE R7, # 60H, NOT_EQ

; . . .  . . . . .  ;R7 = 60H.

NOT_EQ: JC  REQ_LOW ;IF R7 < 60H.

; . . . . . . . .  ;R7 > 60H.

sets the carry flag and branches to the instruction at label NOT_EQ. By testing the carry flag, this instruction 
determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the following instruction,

WAIT: CJNE A, P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the 
data read from P1. (If some other value was being input on P1, the program loops at this point until the P1 data 
changes to 34H.)

CJNE A,direct,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 0 1 direct address rel. address

Operation: (PC) ← (PC) + 3
IF (A) < > (direct)
THEN

(PC) ← (PC) + relative offset
IF (A) < (direct)
THEN

(C) ← 1
ELSE

(C) ← 0



80C51 Microcontrollers Instruction Set

1-18  

0509B–8051–04/04

CJNE A,#data,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 0 0 immediate data rel. address

Operation: (PC) ← (PC) + 3
IF (A) < > data
THEN 

(PC) ← (PC) + relative offset
IF (A) < data
THEN

(C) ← 1
ELSE

(C) ← 0

CJNE Rn,#data,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 1 r r r immediate data rel. address

Operation: (PC) ← (PC) + 3
IF (Rn) < > data
THEN 

(PC) ← (PC) + relative offset
IF (Rn) < data
THEN

(C) ← 1
ELSE

(C) ← 0

CJNE @Ri,data,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 1 i immediate data rel. address

Operation: (PC) ← (PC) + 3
IF ((Ri)) < > data
THEN

(PC) ← (PC) + relative offset
IF ((Ri)) < data
THEN

(C) ← 1
ELSE

(C) ← 0



80C51 Microcontrollers Instruction Set

1-19

0509B–8051–04/04

CLR A

CLR bit

Function: Clear Accumulator

Description: CLR A clears the Accumulator (all bits set to 0). No flags are affected

Example: The Accumulator contains 5CH (01011100B). The following instruction,CLR Aleaves the Accumulator set to 00H 
(00000000B).

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 0 1 0 0

Operation: CLR
(A) ← 0

Function: Clear bit

Description: CLR bit clears the indicated bit (reset to 0). No other flags are affected. CLR can operate on the carry flag or any 
directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The following instruction,CLR P1.2 leaves the port set 
to 59H (01011001B).

CLR C

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 0 1 1

Operation: CLR
(C) ← 0

CLR bit

Bytes: 2

Cycles: 1

Encoding: 1 1 0 0 0 0 1 0 bit address

Operation: CLR
(bit) ← 0



80C51 Microcontrollers Instruction Set

1-20  

0509B–8051–04/04

CPL A

CPL bit

Function: Complement Accumulator

Description: CPLA logically complements each bit of the Accumulator (one’s complement). Bits which previously contained a 
1 are changed to a 0 and vice-versa. No flags are affected.

Example: The Accumulator contains 5CH (01011100B). The following instruction,

CPL A

leaves the Accumulator set to 0A3H (10100011B).

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 0 1 0 0

Operation: CPL
(A) ←     (A)

Function: Complement bit

Description: CPL bit complements the bit variable specified. A bit that had been a 1 is changed to 0 and vice-versa. No other 
flags are affected. CLR can operate on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original data is read from the 
output data latch, not the input pin.

Example: Port 1 has previously been written with 5BH (01011101B). The following instruction sequence,CPL P1.1CPL 
P1.2 leaves the port set to 5BH (01011011B).

CPL C

Bytes: 1

Cycles: 1

Encoding: 1 0 1 1 0 0 1 1

Operation: CPL
(C) ←      (C)

CPL bit

Bytes: 2

Cycles: 1

Encoding: 1 0 1 1 0 0 1 0 bit address

Operation: CPL
(bit) ←     (bit)



80C51 Microcontrollers Instruction Set

1-21

0509B–8051–04/04

DA A

Function: Decimal-adjust Accumulator for Addition

Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in 
packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to 
perform the addition.

If Accumulator bits 3 through 0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to 
the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition sets the carry flag 
if a carry-out of the low-order four-bit field propagates through all high-order bits, but it does not clear the carry 
flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-order 
bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this sets the carry 
flag if there is a carry-out of the high-order bits, but does not clear the carry. The carry flag thus indicates if the 
sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not 
affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by 
adding 00H, 06H, 60H, or 66H to the Accumulator, depending on initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DAA 
apply to decimal subtraction.

Example: The Accumulator holds the value 56H (01010110B), representing the packed BCD digits of the decimal number 
56. Register 3 contains the value 67H (01100111B), representing the packed BCD digits of the decimal number 
67. The carry flag is set. The following instruction sequence

ADDC A,R3 

DA A

first performs a standard two’s-complement binary addition, resulting in the value 0BEH (10111110) in the 
Accumulator. The carry and auxiliary carry flags are cleared.

The Decimal Adjust instruction then alters the Accumulator to the value 24H (00100100B), indicating the packed 
BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The 
carry flag is set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum of 
56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H 
(representing the digits of 30 decimal), then the following instruction sequence,

ADD A, # 99H

DA A

leaves the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order byte of the sum can be 
interpreted to mean 30 - 1 = 29.

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 1 0 0

Operation: DA
-contents of Accumulator are BCD
IF [[(A3-0) > 9] ∨  [(AC) = 1]]

THEN (A3-0) ← (A3-0) + 6
AND

IF [[(A7-4) > 9] ∨  [(C) = 1]]
THEN (A7-4) ← (A7-4) + 6



80C51 Microcontrollers Instruction Set

1-22  

0509B–8051–04/04

DEC byte

Function: Decrement

Description: DEC byte decrements the variable indicated by 1. An original value of 00H underflows to 0FFH. No flags are 
affected. Four operand addressing modes are allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read 
from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H and 40H, respectively. 
The following instruction sequence,

DEC @R0

DEC R0

DEC @R0

leaves register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 0FFH and 3FH.

DEC A

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 1 0 0

Operation: DEC
(A) ← (A) - 1

DEC Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 1 r r r

Operation: DEC
(Rn) ← (Rn) - 1

DEC direct

Bytes: 2

Cycles: 1

Encoding: 0 0 0 1 0 1 0 1 direct address

Operation: DEC
(direct) ← (direct) - 1

DEC @Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 1 1 i

Operation: DEC
((Ri)) ← ((Ri)) - 1



80C51 Microcontrollers Instruction Set

1-23

0509B–8051–04/04

DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B. 
The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry 
and OV flags are cleared.

Exception: if B had originally contained 00H, the values returned in the Accumulator and B-register are 
undefined and the overflow flag are set. The carry flag is cleared in any case.

Example: The Accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). The following 
instruction,

DIV AB

leaves 13 in the Accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B) in B, since 
251 = (13 x 18) + 17. Carry and OV are both cleared.

Bytes: 1

Cycles: 4

Encoding: 1 0 0 0 0 1 0 0

Operation: DIV
(A)15-8 ← (A)/(B)
(B)7-0



80C51 Microcontrollers Instruction Set

1-24  

0509B–8051–04/04

DJNZ <byte>,<rel-addr>

Function: Decrement and Jump if Not Zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if 
the resulting value is not zero. An original value of 00H underflows to 0FFH. No flags are affected. The branch 
destination is computed by adding the signed relative-displacement value in the last instruction byte to the PC, 
after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read 
from the output data latch, not the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The following 
instruction sequence,

DJNZ 40H,LABEL_1

DJNZ 50H,LABEL_2

DJNZ 60H,LABEL_3

causes a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and 15H in the three RAM 
locations. The first jump was not taken because the result was zero.

This instruction provides a simple way to execute a program loop a given number of times or for adding a 
moderate time delay (from 2 to 512 machine cycles) with a single instruction. The following instruction sequence,

MOV R2, # 8

TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse lasts three 
machine cycles; two for DJNZ and one to alter the pin.

DJNZ Rn,rel

Bytes: 2

Cycles: 2

Encoding: 1 1 0 1 1 r r r rel. address

Operation: DJNZ
(PC) ← (PC) + 2
(Rn) ← (Rn) - 1
IF (Rn) > 0 or (Rn) < 0

THEN
(PC) ← (PC) + rel

DJNZ direct,rel

Bytes: 3

Cycles: 2

Encoding: 1 1 0 1 0 1 0 1 direct address rel. address

Operation: DJNZ
(PC) ← (PC) + 2
(direct) ← (direct) - 1
IF (direct) > 0 or (direct) < 0

THEN 
(PC) ← (PC) + rel



80C51 Microcontrollers Instruction Set

1-25

0509B–8051–04/04

INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH overflows to 00H. No flags are affected. 
Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read 
from the output data latch, not the input pins.

Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain 0FFH and 40H, 
respectively. The following instruction sequence,

INC @R0 

INC R0 

INC @R0

leaves register 0 set to 7FH and internal RAM locations 7EH and 7FH holding 00H and 41H, respectively.

INC A

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 1 0 0

Operation: INC
(A) ← (A) + 1

INC Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 1 r r r

Operation: INC
(Rn) ← (Rn) + 1

INC direct

Bytes: 2

Cycles: 1

Encoding: 0 0 0 0 0 1 0 1 direct address

Operation: INC
(direct) ← (direct) + 1

INC @Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 1 1 i

Operation: INC
((Ri)) ← ((Ri)) + 1



80C51 Microcontrollers Instruction Set

1-26  

0509B–8051–04/04

INC DPTR

JB blt,rel

Function: Increment Data Pointer

Description: INC DPTR increments the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed, and an 
overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H increments the high-order byte (DPH). 
No flags are affected.

This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The following instruction sequence,

INC DPTR

INC DPTR

INC DPTR

changes DPH and DPL to 13H and 01H.

Bytes: 1

Cycles: 2

Encoding: 1 0 1 0 0 0 1 1

Operation: INC
(DPTR) ← (DPTR) + 1

Function: Jump if Bit set

Description: If the indicated bit is a one, JB jump to the address indicated; otherwise, it proceeds with the next instruction. 
The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the 
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are 
affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The following instruction 
sequence,

JB P1.2,LABEL1

JB ACC. 2,LABEL2

causes program execution to branch to the instruction at label LABEL2.

Bytes: 3

Cycles: 2

Encoding: 0 0 1 0 0 0 0 0 bit address rel. address

Operation: JB
(PC) ← (PC) + 3
IF (bit) = 1

THEN 
(PC) ← (PC) + rel



80C51 Microcontrollers Instruction Set

1-27

0509B–8051–04/04

JBC bit,rel

JC rel

Function: Jump if Bit is set and Clear bit

Description: If the indicated bit is one, JBC branches to the address indicated; otherwise, it proceeds with the next instruction. 
The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed 
relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next 
instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the 
output data latch, not the input pin.

Example: The Accumulator holds 56H (01010110B). The following instruction sequence,

JBC ACC.3,LABEL1 

JBC ACC.2,LABEL2

causes program execution to continue at the instruction identified by the label LABEL2, with the Accumulator 
modified to 52H (01010010B).

Bytes: 3

Cycles: 2

Encoding: 0 0 0 1 0 0 0 0 bit address rel. address

Operation: JBC
(PC) ← (PC) + 3
IF (bit) = 1

THEN
(bit) ← 0
(PC) ← (PC) +rel

Function: Jump if Carry is set

Description: If the carry flag is set, JC branches to the address indicated; otherwise, it proceeds with the next instruction. The 
branch destination is computed by adding the signed relative-displacement in the second instruction byte to the 
PC, after incrementing the PC twice. No flags are affected.

Example: The carry flag is cleared. The following instruction sequence,

JC LABEL1 

CPL C

 JC LABEL 2

sets the carry and causes program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 0 0 0 0 0 0 rel. address

Operation: JC
(PC) ← (PC) + 2
IF (C) = 1

THEN 
(PC) ← (PC) + rel



80C51 Microcontrollers Instruction Set

1-28  

0509B–8051–04/04

JMP @A+DPTR

Function: Jump indirect

Description: JMP @A+DPTR adds the eight-bit unsigned contents of the Accumulator with the 16-bit data pointer and loads 
the resulting sum to the program counter. This is the address for subsequent instruction fetches. Sixteen-bit 
addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-order 
bits. Neither the Accumulator nor the Data Pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions branches to one of 
four AJMP instructions in a jump table starting at JMP_TBL.

MOV DPTR, # JMP_TBL

JMP @A + DPTR

JMP_TBL: AJMP LABEL0

AJMP LABEL1

AJMP LABEL2

AJMP LABEL3

If the Accumulator equals 04H when starting this sequence, execution jumps to label LABEL2. Because AJMP is 
a 2-byte instruction, the jump instructions start at every other address.

Bytes: 1

Cycles: 2

Encoding: 0 1 1 1 0 0 1 1

Operation: JMP
(PC) ← (A) + (DPTR)



80C51 Microcontrollers Instruction Set

1-29

0509B–8051–04/04

JNB bit,rel

JNC rel

Function: Jump if Bit Not set

Description: If the indicated bit is a 0, JNB branches to the indicated address; otherwise, it proceeds with the next instruction. 
The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the 
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are 
affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The following 
instruction sequence,

JNB P1.3,LABEL1

JNB ACC.3,LABEL2

causes program execution to continue at the instruction at label LABEL2.

Bytes: 3

Cycles: 2

Encoding: 0 0 1 1 0 0 0 0 bit address rel. address

Operation: JNB
(PC) ← (PC) + 3
IF (bit) = 0

THEN (PC) ← (PC) + rel

Function: Jump if Carry not set

Description: If the carry flag is a 0, JNC branches to the address indicated; otherwise, it proceeds with the next instruction. 
The branch destination is computed by adding the signal relative-displacement in the second instruction byte to 
the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The following instruction sequence,

JNC LABEL1

CPL C

JNC LABEL2

clears the carry and causes program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 0 1 0 0 0 0 rel. address

Operation: JNC
(PC) ← (PC) + 2
IF (C) = 0

THEN (PC) ← (PC) + rel



80C51 Microcontrollers Instruction Set

1-30  

0509B–8051–04/04

JNZ rel

JZ rel

Function: Jump if Accumulator Not Zero

Description: If any bit of the Accumulator is a one, JNZ branches to the indicated address; otherwise, it proceeds with the 
next instruction. The branch destination is computed by adding the signed relative-displacement in the second 
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are 
affected.

Example: The Accumulator originally holds 00H. The following instruction sequence,

JNZ LABEL1 

INC A 

JNZ LABEL2

sets the Accumulator to 01H and continues at label LABEL2. 

Bytes: 2

Cycles: 2

Encoding: 0 1 1 1 0 0 0 0 rel. address

Operation: JNZ
(PC) ← (PC) + 2
IF (A) ≠ 0

THEN (PC) ← (PC) + rel

Function: Jump if Accumulator Zero

Description: If all bits of the Accumulator are 0, JZ branches to the address indicated; otherwise, it proceeds with the next 
instruction. The branch destination is computed by adding the signed relative-displacement in the second 
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are 
affected.

Example: The Accumulator originally contains 01H. The following instruction sequence,

JZ LABEL1

DEC A

JZ LABEL2

changes the Accumulator to 00H and causes program execution to continue at the instruction identified by the 
label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 1 0 0 0 0 0 rel. address

Operation: JZ
(PC) ← (PC) + 2
IF (A) = 0

THEN (PC) ← (PC) + rel



80C51 Microcontrollers Instruction Set

1-31

0509B–8051–04/04

LCALL addr16

LJMP addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to 
generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first), 
incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded, 
respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the 
instruction at this address. The subroutine may therefore begin anywhere in the full 64K byte program memory 
address space. No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label SUBRTN is assigned to program memory location 1234H. After 
executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and 
01H, and the PC will contain 1234H.

Bytes: 3

Cycles: 2

Encoding: 0 0 0 1 0 0 1 0 addr15-addr8 addr7-addr0

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC) ← addr15-0

Function: Long Jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of 
the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in 
the full 64K program memory address space. No flags are affected.

Example: The label JMPADR is assigned to the instruction at program memory location 1234H. The instruction,

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Bytes: 3

Cycles: 2

Encoding: 0 0 0 0 0 0 1 0 addr15-addr8 addr7-addr0

Operation: LJMP
(PC) ← addr15-0



80C51 Microcontrollers Instruction Set

1-32  

0509B–8051–04/04

MOV  <dest-byte>,<src-byte> 

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the first operand. The 
source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are 
allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is 
11001010B (0CAH).

MOV R0,#30H ;R0 < = 30H

MOV A,@R0 ;A < = 40H

MOV R1,A ;R1 < = 40H

MOV B,@R1 ;B < = 10H

MOV @R1,P1 ;RAM (40H) < = 0CAH

MOV P2,P1 ;P2 #0CAH

leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register B, and 0CAH 
(11001010B) both in RAM location 40H and output on port 2.

MOV A,Rn

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 1 r r r

Operation: MOV
(A) ← (Rn)

*MOV A,direct

Bytes: 2

Cycles: 1

Encoding: 1 1 1 0 0 1 0 1 direct address

Operation: MOV
(A) ← (direct)

* MOV A,ACC is not a valid Instruction.

MOV   A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 0 1 1 i

Operation: MOV
(A) ← ((Ri))



80C51 Microcontrollers Instruction Set

1-33

0509B–8051–04/04

MOV   A,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 0 1 0 0  immediate data

Operation: MOV
(A) ← #data

MOV   Rn,A

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 1 r r r

Operation: MOV
(Rn) ← (A)

MOV   Rn,direct

Bytes: 2

Cycles: 2

Encoding: 1 0 1 0 1 r r r  direct addr.

Operation: MOV
(Rn) ← (direct)

MOV   Rn,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 1 r r r  immediate data

Operation: MOV
(Rn) ← #data

MOV   direct,A

Bytes: 2

Cycles: 1

Encoding: 1 1 1 1 0 1 0 1 direct address

Operation: MOV
(direct) ← (A)

MOV   direct,Rn

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 1 r r r direct address

Operation: MOV
(direct) ← (Rn)



80C51 Microcontrollers Instruction Set

1-34  

0509B–8051–04/04

MOV   direct,direct

Bytes: 3

Cycles: 2

Encoding: 1 0 0 0 0 1 0 1 dir. addr. (scr)  dir. addr.  (dest)

Operation: MOV
(direct) ← (direct)

MOV   direct,@Ri

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 1 1 i direct addr.

Operation: MOV
(direct) ← ((Ri))

MOV   direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 1 1 0 1 0 1 direct address immediate data

Operation: MOV
(direct) ← #data

MOV   @Ri,A

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 0 1 1 i

Operation: MOV
((Ri)) ← (A)

MOV   @Ri,direct

Bytes: 2

Cycles: 2

Encoding: 1 0 1 0 0 1 1 i direct addr.

Operation: MOV
((Ri)) ← (direct)

MOV   @Ri,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 0 1 1 i immediate data

Operation: MOV
((Ri)) ← #data



80C51 Microcontrollers Instruction Set

1-35

0509B–8051–04/04

MOV <dest-bit>,<src-bit>

MOV  DPTR,#data16

Function: Move bit data

Description: MOV <dest-bit>,<src-bit> copies the Boolean variable indicated by the second operand into the location 
specified by the first operand. One of the operands must be the carry flag; the other may be any directly 
addressable bit. No other register or flag is affected.

Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data previously written to 
output Port 1 is 35H (00110101B).

MOV P1.3,C

MOV C,P3.3

MOV P1.2,C

leaves the carry cleared and changes Port 1 to 39H (00111001B).

MOV C,bit

Bytes: 2

Cycles: 1

Encoding: 1 0 1 0 0 0 1 0 bit address

Operation: MOV
(C) ← (bit)

MOV bit,C

Bytes: 2

Cycles: 2

Encoding: 1 0 0 1 0 0 1 0 bit address

Operation: MOV
(bit) ← (C)

Function: Load Data Pointer with a 16-bit constant

Description: MOV DPTR,#data16 loads the Data Pointer with the 16-bit constant indicated. The 16-bit constant is loaded into 
the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte 
(DPL) holds the lower-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction,

MOV DPTR, # 1234H

loads the value 1234H into the Data Pointer: DPH holds 12H, and DPL holds 34H.

Bytes: 3

Cycles: 2

Encoding: 1 0 0 1 0 0 0 0 immed. data15-8 immed. data7-0

Operation: MOV
(DPTR) ← #data15-0
DPH ← DPL ← #data15-8 ← #data7-0



80C51 Microcontrollers Instruction Set

1-36  

0509B–8051–04/04

MOVC A,@A+ <base-reg>

Function: Move Code byte

Description: The MOVC instructions load the Accumulator with a code byte or constant from program memory. The address 
of the byte fetched is the sum of the original unsigned 8-bit Accumulator contents and the contents of a 16-bit 
base register, which may be either the Data Pointer or the PC. In the latter case, the PC is incremented to the 
address of the following instruction before being added with the Accumulator; otherwise the base register is not 
altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through 
higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the 
Accumulator to one of four values defined by the DB (define byte) directive.

REL_PC: INC A 

MOVC A,@A+PC 

RET 

DB 66H 

DB 77H 

DB 88H 

DB 99H

If the subroutine is called with the Accumulator equal to 01H, it returns with 77H in the Accumulator. The INC A 
before the MOVC instruction is needed to “get around” the RET instruction above the table. If several bytes of 
code separate the MOVC from the table, the corresponding number is added to the Accumulator instead.

MOVC A,@A+DPTR

Bytes: 1

Cycles: 2

Encoding: 1 0 0 1 0 0 1 1

Operation: MOVC
(A) ← ((A) + (DPTR))

MOVC A,@A+PC

Bytes: 1

Cycles: 2

Encoding: 1 0 0 0 0 0 1 1

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))



80C51 Microcontrollers Instruction Set

1-37

0509B–8051–04/04

MOVX <dest-byte>,<src-byte> 

Function: Move External

Description: The MOVX instructions transfer data between the Accumulator and a byte of external data memory, which is why 
“X” is appended to MOV. There are two types of instructions, differing in whether they provide an 8-bit or 16-bit 
indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an 8-bit address multiplexed with 
data on P0. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For 
somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins are 
controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a 16-bit address. P2 outputs the high-order 
eight address bits (the contents of DPH), while P0 multiplexes the low-order eight bits (DPL) with data. The P2 
Special Function Register retains its previous contents, while the P2 output buffers emit the contents of DPH. 
This form of MOVX is faster and more efficient when accessing very large data arrays (up to 64K bytes), since 
no additional instructions are needed to set up the output ports.

It is possible to use both MOVX types in some situations. A large RAM array with its high-order address lines 
driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2, 
followed by a MOVX instruction using R0 or R1.

Example: An external 256 byte RAM using multiplexed address/data lines is connected to the 8051 Port 0. Port 3 provides 
control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 
34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@R1

MOVX @R0,A

copies the value 56H into both the Accumulator and external RAM location 12H.

MOVX A,@Ri

Bytes: 1

Cycles: 2

Encoding: 1 1 1 0 0 0 1 i

Operation: MOVX
(A) ← ((Ri))

MOVX A,@DPTR

Bytes: 1

Cycles: 2

Encoding: 1 1 1 0 0 0 0 0

Operation: MOVX
(A) ← ((DPTR))



80C51 Microcontrollers Instruction Set

1-38  

0509B–8051–04/04

MUL AB

MOVX @Ri,A

Bytes: 1

Cycles: 2

Encoding: 1 1 1 1 0 0 1 i

Operation: MOVX
((Ri)) ← (A)

MOVX @DPTR,A

Bytes: 1

Cycles: 2

Encoding: 1 1 1 1 0 0 0 0

Operation: MOVX
(DPTR) ← (A)

Function: Multiply

Description: MUL AB multiplies the unsigned 8-bit integers in the Accumulator and register B. The low-order byte of the 16-bit 
product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255 (0FFH), the 
overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H). The instruction,

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared. The 
overflow flag is set, carry is cleared.

Bytes: 1

Cycles: 4

Encoding: 1 0 1 0 0 1 0 0

Operation: MUL
(A)7-0 ← (A) X (B)
(B)15-8



80C51 Microcontrollers Instruction Set

1-39

0509B–8051–04/04

NOP

ORL <dest-byte> <src-byte>

Function: No Operation

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are affected.

Example: A low-going output pulse on bit 7 of Port 2 must last exactly 5 cycles. A simple SETB/CLR sequence generates 
a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are 
enabled) with the following instruction sequence,

CLR P2.7

NOP

NOP

NOP

NOP

SETB P2.7

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 0 0 0

Operation: NOP
(PC) ← (PC) + 1

Function: Logical-OR for byte variables

Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the 
destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source 
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the 
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read from 
the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then the following instruction,

ORL A,R0

leaves the Accumulator holding the value 0D7H (1101011lB).When the destination is a directly addressed byte, 
the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set 
is determined by a mask byte, which may be either a constant data value in the instruction or a variable 
computed in the Accumulator at run-time. The instruction,

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 1 0 0 1 r r r

Operation: ORL
(A) ← (A) ∨  (Rn)



80C51 Microcontrollers Instruction Set

1-40  

0509B–8051–04/04

ORL A,direct

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 1 0 1 direct address

Operation: ORL
(A) ← (A) ∨  (direct)

ORL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 1 0 0 0 1 1 i

Operation: ORL
(A) ← (A) ∨ ((Ri))

ORL A,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 1 0 0 immediate data

Operation: ORL
(A) ← (A) ∨  #data

ORL direct,A

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 0 1 0 direct address

Operation: ORL
(direct) ← (direct) ∨  (A)

ORL direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 0 0 0 0 1 1 direct addr. immediate data

Operation: ORL
(direct) ← (direct) ∨  #data



80C51 Microcontrollers Instruction Set

1-41

0509B–8051–04/04

ORL C,<src-bit>

POP direct

Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash ( / ) 
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is 
used as the source value, but the source bit itself is not affected. No other flags are affected.

Example: Set the carry flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10

ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7

ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV.

ORL C,bit

Bytes: 2

Cycles: 2

Encoding: 0 1 1 1 0 0 1 0 bit address

Operation: ORL
(C) ← (C) ∨  (bit)

ORL C,/bit

Bytes: 2

Cycles: 2

Encoding: 1 0 1 0 0 0 0 0 bit address

Operation: ORL
(C) ← (C) ∨  (bit)

Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is 
decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are 
affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the 
values 20H, 23H, and 01H, respectively. The following instruction sequence,

POP DPH

POP DPL

leaves the Stack Pointer equal to the value 30H and sets the Data Pointer to 0123H. At this point, the following 
instruction,

POP SP

leaves the Stack Pointer set to 20H. In this special case, the Stack Pointer was decremented to 2FH before 
being loaded with the value popped (20H).

Bytes: 2

Cycles: 2

Encoding: 1 1 0 1 0 0 0 0 direct address

Operation: POP
(direct) ← ((SP))
(SP) ← (SP) - 1



80C51 Microcontrollers Instruction Set

1-42  

0509B–8051–04/04

PUSH direct

RET

Function: Push onto stack

Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the internal 
RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

Example: On entering an interrupt routine, the Stack Pointer contains 09H. The Data Pointer holds the value 0123H. The 
following instruction sequence,

PUSH DPL

PUSH DPH

leaves the Stack Pointer set to 0BH and stores 23H and 01H in internal RAM locations 0AH and 0BH, 
respectively.

Bytes: 2

Cycles: 2

Encoding: 1 1 0 0 0 0 0 0 direct address

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (direct)

Function: Return from subroutine

Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer 
by two. Program execution continues at the resulting address, generally the instruction immediately following an 
ACALL or LCALL. No flags are affected.

Example: The Stack Pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values 
23H and 01H, respectively. The following instruction,

RET

leaves the Stack Pointer equal to the value 09H. Program execution continues at location 0123H.

Bytes: 1

Cycles: 2

Encoding: 0 0 1 0 0 0 1 0

Operation: RET
(PC15-8) ← ((SP))
(SP) ← (SP) - 1
(PC7-0) ← ((SP))
(SP) ← (SP) - 1



80C51 Microcontrollers Instruction Set

1-43

0509B–8051–04/04

RETI

RL A

Function: Return from interrupt

Description: RETI pops the high- and low-order bytes of the PC successively from the stack and restores the interrupt logic to 
accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left 
decremented by two. No other registers are affected; the PSW is not automatically restored to its pre-interrupt 
status. Program execution continues at the resulting address, which is generally the instruction immediately after 
the point at which the interrupt request was detected. If a lower- or same-level interrupt was pending when the 
RETI instruction is executed, that one instruction is executed before the pending interrupt is processed.

Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at 
location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The 
following instruction,

RETI

leaves the Stack Pointer equal to 09H and returns program execution to location 0123H.

Bytes: 1

Cycles: 2

Encoding: 0 0 1 1 0 0 1 0

Operation: RETI
(PC15-8) ← ((SP))
(SP) ← (SP) - 1
(PC7-0) ← ((SP))
(SP) ← (SP) - 1

Function: Rotate Accumulator Left

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are 
affected.

Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,

RL A

leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected. 

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 0 0 1 1

Operation: RL
(An + 1) ← (An) n = 0 - 6
(A0) ← (A7)



80C51 Microcontrollers Instruction Set

1-44  

0509B–8051–04/04

RLC A

RR A

RRC A

Function: Rotate Accumulator Left through the Carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the 
carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H(11000101B), and the carry is zero. The following instruction,

RLC A

leaves the Accumulator holding the value 8BH (10001010B) with the carry set. 

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 0 0 1 1

Operation: RLC
(An + 1) ← (An) n = 0 - 6
(A0) ← (C)
(C) ← (A7)

Function: Rotate Accumulator Right

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags 
are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,

RR A

leaves the Accumulator holding the value 0E2H (11100010B) with the carry unaffected. 

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 0 1 1

Operation: RR
(An) ← (An + 1) n = 0 - 6
(A7) ← (A0)

Function: Rotate Accumulator Right through Carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the 
carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero. The following instruction,

RRC A

leaves the Accumulator holding the value 62 (01100010B) with the carry set. 

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 0 1 1

Operation: RRC
(An) ← (An + 1) n = 0 - 6
(A7) ← (C)
(C) ← (A0)



80C51 Microcontrollers Instruction Set

1-45

0509B–8051–04/04

SETB <bit>

SJMP rel

Function: Set Bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other 
flags are affected.

Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The following 
instructions,

SETB C

SETB P1.0

sets the carry flag to 1 and changes the data output on Port 1 to 35H (00110101B).

SETB C

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 0 1 1

Operation: SETB
(C) ← 1

SETB bit

Bytes: 2

Cycles: 1

Encoding: 1 1 0 1 0 0 1 0 bit address 

Operation: SETB
(bit) ← 1

Function: Short Jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by 
adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice. 
Therefore, the range of destinations allowed is from 128 bytes preceding this instruction 127 bytes following it.

Example: The label RELADR is assigned to an instruction at program memory location 0123H. The following instruction,

SJMP RELADR

assembles into location 0100H. After the instruction is executed, the PC contains the value 0123H.

Note: Under the above conditions the instruction following SJMP is at 102H. Therefore, the displacement byte of 
the instruction is the relative offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement of 
0FEH is a one-instruction infinite loop.

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 0 0 rel. address

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel



80C51 Microcontrollers Instruction Set

1-46  

0509B–8051–04/04

SUBB A,<src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the 
Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7 and clears C otherwise. (If C was 
set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a 
multiple-precision subtraction, so the carry is subtracted from the Accumulator along with the source operand.) 
AC is set if a borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is needed into bit 6, but not 
into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers, OV indicates a negative number produced when a negative value is 
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative 
number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The 
instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry 
(borrow) flag being set before the operation. If the state of the carry is not known before starting a single or 
multiple-precision subtraction, it should be explicitly cleared by CLR C instruction.

SUBB A,Rn

Bytes: 1

Cycles: 1

Encoding: 1 0 0 1 1 r r r

Operation: SUBB
(A) ← (A) - (C) - (Rn)

SUBB A,direct

Bytes: 2

Cycles: 1

Encoding: 1 0 0 1 0 1 0 1 direct address

Operation: SUBB
(A) ← (A) - (C) - (direct)

SUBB A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1 0 0 1 0 1 1 i

Operation: SUBB
(A) ← (A) - (C) - ((Ri))

SUBB A,#data

Bytes: 2

Cycles: 1

Encoding: 1 0 0 1 0 1 0 0 immediate data

Operation: SUBB
(A) ← (A) - (C) - #data



80C51 Microcontrollers Instruction Set

1-47

0509B–8051–04/04

SWAP A

XCH A,<byte>

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator (bits 3 through 0 and 
bits 7 through 4). The operation can also be thought of as a 4-bit rotate instruction. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,

SWAP A

leaves the Accumulator holding the value 5CH (01011100B).

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 1 0 0

Operation: SWAP
(A3-0) D (A7-4)

Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original 
Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or 
register-indirect addressing.

Example: R0 contains the address 20H. The Accumulator holds the value 3FH (0011111lB). Internal RAM location 20H 
holds the value 75H (01110101B). The following instruction,

XCH A,@R0

leaves RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the accumulator.

XCH A,Rn

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 1 r r r

Operation: XCH
(A) D ((Rn)

XCH A,direct

Bytes: 2

Cycles: 1

Encoding: 1 1 0 0 0 1 0 1 direct address

Operation: XCH
(A) D (direct)

XCH A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 1 1 i

Operation: XCH
(A) D ((Ri))



80C51 Microcontrollers Instruction Set

1-48  

0509B–8051–04/04

XCHD A,@Ri

XRL <dest-byte>,<src-byte> 

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3 through 0), generally representing a 
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the specified register. 
The high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.

Example: R0 contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal RAM location 20H 
holds the value 75H (01110101B). The following instruction,

XCHD A,@R0

leaves RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the Accumulator.

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 1 1 i

Operation: XCHD
(A3-0) D ((Ri3-0))

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the results in 
the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the 
source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct 
address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read 
from the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001lB) and register 0 holds 0AAH (10101010B) then the instruction,

XRL A,R0

leaves the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any 
RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, 
either a constant contained in the instruction or a variable computed in the Accumulator at run-time. The 
following instruction,

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.

XRL   A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 1 1 0 1 r r r

Operation: XRL
(A) ← (A) V (Rn)



80C51 Microcontrollers Instruction Set

1-49

0509B–8051–04/04

XRL   A,direct

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 1 0 1 direct address

Operation: XRL
(A) ← (A) V (direct)

XRL   A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 1 1 0 0 1 1 i

Operation: XRL
(A) ← (A) V (Ri)

XRL   A,@#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 1 0 0 immediate data

Operation: XRL
(A) ← (A) V #data

XRL   direct,A

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 0 1 0 direct address

Operation: XRL
(direct) ← (direct) V (A)

XRL   direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 1 0 0 0 1 1 direct address immediate data

Operation: XRL
(direct) ← (direct) V #data



Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof are the trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be the trademarks of others.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland 
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

 Printed on recycled paper.


